(本题14分)
已知向量动点
到定直线
的距离等于
并且满足
其中O是坐标原点,
是参数.
(I)求动点的轨迹方程,并判断曲线类型;
(Ⅱ) 当时,求
的最大值和最小值;
(Ⅲ) 如果动点M的轨迹是圆锥曲线,其离心率满足
求实数
的取值范围.
(本题13分)
已知等比数列的前
项和是
,满足
.
(Ⅰ)求数列的通项
及前
项和
;
(Ⅱ)若数列
满足
,求数列
的前
项和
;
(Ⅲ)若对任意的,恒有
成立,求实数
的取值范围.
(本题12分)
已知函数与函数
.
(I)若的图象
在点
处有公共的切线,求实数
的值;
(Ⅱ)设,求函数
的极值.
本题12分)
长方体中,
,
,
是底面对角线的交点.
(Ⅰ) 求证:平面
;
(Ⅱ) 求证:平面
;
(Ⅲ) 求三棱锥的体积.
(本题12分)
某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.
(I)求家具城恰好返还该顾客现金200元的概率;
(II)求家具城至少返还该顾客现金200元的概率.