某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示.
(Ⅰ)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?
等比数列的首项为
,公比为
,用
表示这个数列的第n项到第m项共
项的和.
(Ⅰ)计算,
,
,并证明它们仍成等比数列;
(Ⅱ)受上面(Ⅰ)的启发,你能发现更一般的规律吗?写出你发现的一般规律,并证明.
已知数列是公比为
的等比数列,
是其前
项和,且
成等差数列
(1)求证:也成等差数列
(2)判断以为前三项的等差数列的第四项是否也是数列
中的一项,若是求出这一项,若不是请说明理由.
设为等差数列,
为等比数列,
,分别求出
及
的前n项和
.
若数列前n项和可表示为
,则
是否可能成为等比数列?若可能,求出a值;若不可能,说明理由.
(本小题满分I3分)
设函数,
(1)若时函数f(x)有三个互不相同的零点,求实数m的取值范围;
(2)若对任意的,不等式f(x)≤1恒成立,求实数m的取值范围