(本小题满分12分)已知F1、F2是椭圆的两个焦点,P是椭圆上任意一点.
(1)若∠F1PF2=,求△F1PF2的面积;
(2)求PF1·PF2的最大值.
已知函数f(x)=ax+(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
在四棱锥P-ABC中,底面ABCD是矩形,PA平面ABCD,M,N分别是AB,PC的中点。
(1)求证:MN∥平面PAD。
(2)求证:MNCD.
(3)若PD与平面ABCD所成的角为450,
求证:MN平面PCD.
当k为何值时,直线3x-(k+2)y+k+5=0与直线kx+(2k-3)y+2=0,
(1).相交(2).垂直(3).平行(4).重合。
(本题满分14分)设,
分别为椭圆
的左右焦点,过
的直线
与椭圆
相交于
,
两点,直线
的倾斜角为
,
到直线
的距离为
.
(Ⅰ)求椭圆的焦距;
(Ⅱ)如果,求椭圆
的方程.
(本题满分12分)求使函数的图像全在
轴上方成立的充要条件.