(本小题满分12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,得到如下数据:
(Ⅰ)若用表中数据所得频率代替概率,则处罚10元时与处罚20元时,行人会闯红灯的概率的差是多少?
(Ⅱ)若从这5种处罚金额中随机抽取2种不同的金额进行处罚,在两个路口进行试验.
①求这两种金额之和不低于20元的概率;
②若用X表示这两种金额之和,求X的分布列和数学期望.
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
正三棱柱的所有棱长都为4,D为的
中点.
(1)求证:⊥平面
;
(2)求二面角余弦值.
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:
付款方式 |
分1期 |
分2期 |
分3期 |
分4期 |
分5期 |
频数 |
40 |
20 |
![]() |
10 |
![]() |
已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元.用表示经销一辆汽车的利润.
(1)求上表中的值;
(2)若以频率作为概率,求事件:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率
;(3)求
的分布列及数学期望
.
已知函数
(Ⅰ)求函数的最小正周期;
(Ⅱ)确定函数在
上的单调性并求在此区间上
的最小值.
如图所示,四棱锥中,底面
是个边长为
的正方形,侧棱
底面
,且
,
是
的中点.
(I)证明:平面
;
(II)求三棱锥的体积.