设,函数.(Ⅰ)求的单调递增区间;(Ⅱ)设问是否存在极值,若存在,请求出极值;若不存在,请说明理由;(Ⅲ)设是函数图象上任意不同的两点,线段的中点为直线的斜率为.证明:.
如图(1)示,在梯形中,,,且,如图(2)沿将四边形折起,使得平面与平面垂直,为的中点. (Ⅰ)求证: (Ⅱ)求证:; (Ⅲ)求点D到平面BCE的距离。
如图所示,圆锥的轴截面为等腰直角△SAB,Q为底面圆周上一点. (Ⅰ)若QB的中点为C,OH⊥SC,求证:OH⊥平面SBQ; (Ⅱ)如果∠AOQ=60°,QB=2,求此圆锥的体积和侧面积.
一个正三棱柱的三视图如图所示,求这个正三棱柱的体积和表面积.
已知函数 (1)求; (2)求的值; (3)求
(1)函数f(x)是R上的偶函数,且当x>0时,函数的解析式为.求当x<0时,函数的解析式. (2)若满足关系式,求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号