某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间
(单位:天)变化的函数关系式近似为
,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的4天中能够持续有效去污,试求
的最小值(精确到
,参考数据:
取
).
已知正四棱柱的底面边长为2,
.
(1)求该四棱柱的侧面积与体积;
(2)若为线段
的中点,求
与平面
所成角的大小.
已知函数,
(其中
,
),且函数
的图象在点
处的切线与函数
的图象在点
处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足
,求实数m的取值范围;
如图,F1,F2是离心率为的椭圆
C:(a>b>0)的左、右焦点,直线
:x=-
将线段F1F2分成两段,其长度之比为1 :3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.
已知,数列
满足
,数列
满足
;又知数列
中,
,且对任意正整数
,
.
(Ⅰ)求数列和数列
的通项公式;
(Ⅱ)将数列中的第
项,第
项,第
项,……,第
项,……删去后,剩余的项按从小到大的顺序排成新数列
,求数列
的前
项和.
(本小题满分12分)如图,直角梯形与等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求直线与平面
所成角的正弦值;
(2)线段上是否存在点
,使
// 平面
?若存在,求出
;若不存在,说明理由.1