2014年6月,某中学以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:
(1)在这次抽样调查中,一共调查了多少名学生?
(2)请把折线统计图(图①)补充完整;
(3)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书箱的学生人数.
如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.
(1)求弦AB的长;(2)求劣弧的长.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,点A,B,C的坐标分别为(0,1),(1,-1),(5,1).
(1)直接写出点B关于原点的对称点D的坐标;
(2)将△ABC绕点C顺时针旋转90º得到△A1B1C.请在网格中画出△A1B1C,并直接写出点A1和B1的坐标.
如图,正比例函数y=2x与反比例函数的图象的一个交点为A(2,m).
求m和k的值.
如图,点D是△ABC的边AC上的一点,AB2=AC·AD.求证:△ADB∽△ABC.
如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=, E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连结CE.
(1)求AC和OA的长;
(2)设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此 时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.