如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字,现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).
(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)李刚为甲、乙两人设计了一个游戏:记s=x+y.当s<6时,甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?
(3)请你利用两个转盘,设计一个公平的游戏规则.
(1)阅读理解:
如图,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的大小.
思路点拨:考虑到PA,PB,PC不在一个三角形中,采用转化与化归的数学思想,可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时△ACP′≌△ABP,这样,就可以利用全等三角形知识,结合已知条件,将三条线段的长度转化到一个三角形中,从而求出∠APB的度数。请你写出完整的解题过程.
(2)变式拓展:请你利用第(1)题的解答思想方法,解答下面问题:
已知如图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,,求EF的大小.
11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
已知:如图AC=BD,AB=DC。
证明:(1)∠A=∠D;(2)OB=OC
如图,A、C两乡镇到水渠边的距离分别为AB=2km,CD=4km,且BD=8km。
(1)在水渠边上要建一个水电站P,使得PA+PC最小,请在图中画出P的位置(保留作图痕迹),不必说明理由。
(2)求出PA+PC最小值。
已知:如图,∠ACB=∠ADB=90°,AC=AD,E是AB上任意一点。
(1)BC与BD相等吗?试说明理由。
(2)CE=DE吗?为什么?