已知点为抛物线
的焦点,点
在抛物线
上,且
.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知点,延长
交抛物线
于点
,证明:以点
为圆心且与直线
相切的圆,必与直线
相切.
已知数列 ,
满足
数列
的前
项和为
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求证:;
(Ⅲ)求证:当时,
.
已知椭圆和圆
:
,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e的值;
(ⅱ)若椭圆上存在点P,使得,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于点M,N,问当点P在椭圆上运动时,是否为定值?请证明你的结论.
江苏某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为
平方米,且高度不低于
米,设防洪堤横断面的腰长为
米,外周长(梯形的上底线段BC与两腰长的和)为
米.
(1)求关于
的函数关系式,并指出其定义域;
(2)要使防洪提的横断面的外周长不超过10.5米,则其腰长应在什么范围内?
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(Ⅰ)若F为PC的中点,求证PC⊥平面AEF;
(Ⅱ)求四棱锥P-ABCD的体积V.
在△ABC中,分别是角A,B,C的对边,
,
.
(Ⅰ)求角的值;
(Ⅱ)若,求△ABC面积.