设函数.
(1)若函数在
时取得极小值,求
的值;
(2)若函数在定义域上是单调函数,求
的取值范围.
设抛物线的准线与
轴交于点
,焦点为
;椭圆
以
为焦点,离心率
。
(I)当时,①求椭圆
的标准方程;②若直线
与抛物线交于
两点,且线段
恰好被点
平分,设直线
与椭圆
交于
两点,求线段
的长;
(II)(仅理科做)设抛物线与椭圆
的一个交点为
,是否存在实数
,使得
的边长是连续的自然数?若存在,求出这样的实数
的值;若不存在,请说明理由。
如图,已知平行六面体。
(I)若为
的重心,
,设
,用向量
表示向量
;
(II)若平行六面体各棱长相等且
平面
,
为
中点,
,求证;
平面
。
设圆为坐标原点
(I)若直线过点
,且圆心
到直线
的距离等于1,求直线
的方程;
(II)已知定点,若
是圆
上的一个动点,点
满足
,求动点
的轨迹方程。
如图,为正方形
所在平面外一点
平面
,且
分别是线段
的中点。w.(I)求证:
平面
;
(II)求证:平面平面
;
(III)求异面直线与
所成角的大小。
已知直线
经过点
。
(I)求的值;
(II)若直线过点
且
,求直线
的方程。