已知函数的图象过点(0,3),且在
和
上为增函数,在
上为减函数.
(1)求的解析式;
(2)求在R上的极值.
(本小题满分12分)
已知函数为常数).
(1)求函数的最小正周期;(2)求函数
的单调递增区间;
(3) 若时,
的最小值为
,求
的值.
(本小题满分10分)选修4-5:不等式选讲
(I)已知都是正实数,求证:
;
(II)设函数,解不等式
.
已知A、B是圆上满足条件
的两个点,其中O是坐标原点,
分别过A、B作
轴的垂线段,交椭圆
于
点,动点P满足
.(1)求动点P的轨迹方程;(2)设S1和S2
分别表示
和
的面积,当点P在x轴的上方,点A在x轴的下方时,求
的最大值。
已知抛物线上一点M(1,1),动弦ME、MF分别交
轴与A、B两点,且MA=MB
。证明:直线EF的斜率为定值。
已知函数,(1)求
的单调区间;(2)若
,求
在区间
上的最值;