某工厂去年新开发的某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元的科技成本,并计划以后每年比上一年多投入100万元,预计产量每年递增10万只,投入n次后,每只产品的固定成本为g(n)=(k为常数,n∈Z且n≥0).若产品销售价保持不变,第n次投入后的年纯利润为f(n)万元(年纯利润=年收入-年固定成本-年科技成本).
(1)求k的值,并求出f(n)的表达式;
(2)问从今年起,第几年纯利润最高?最高纯利润为多少万元?
已知椭圆的两个焦点分别为
,过点
的直线与椭圆相交于
两点,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)求直线的斜率.
如图,已知四棱锥,底面
为菱形,
平面
,
,
分别是
的中点.
(Ⅰ)证明:;
(Ⅱ)若,求二面角
的余弦值.
甲、乙两人共同抛掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积得3分者获胜,并结束游戏.
(Ⅰ)求在前3次抛掷中甲得2分,乙得1分的概率;
(Ⅱ)若甲已经积得2分,乙已经积得1分,求甲最终获胜的概率;
(Ⅲ)用表示决出胜负抛硬币的次数,求
的分布列及数学期望.
在数列中,
.
(Ⅰ)证明数列成等比数列,并求
的通项公式;
(Ⅱ)令,求数列
的前
项和
.
已知函数有如下性质:如果常数
,那么该函数在
上是减函数,在
上是增函数.
(1)已知,利用上述性质,求函数
的单调区间和值域;
(2)对于(1)中的函数和函数
,若对任意
∈[0,1],总存在
∈[0,1],使得
=
成立,求实数
的值.