为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租。该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数
的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
(本小题满分10分)选修4-5:不等式选讲:
已知函数
.
(Ⅰ)求不等式
的解集;
(Ⅱ)若关于
的不等式
恒成立,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程:
以直角坐标系的原点
为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数,
),曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)设直线
与曲线
相交于
、
两点,当
变化时,求
的最小值.
(本小题满分10分)选修4-1:几何证明选讲:
如图所示,已知
与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
(Ⅰ)求证:
;
(Ⅱ)若
,求
的长.
(本小题满分12分) 设函数
(1)当
时,求函数
的单调区间;
(2)令
<
≤
,其图像上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当
时,方程
在区间
内有唯一实数解,求实数
的取值范围.
(本小题满分12分)椭圆
:
的离心率为
,长轴端点与短轴端点间的距离为
.
(1)求椭圆
的方程;
(2)设过点
的直线
与椭圆
交于
两点,
为坐标原点,若
为直角三角形,求直线
的斜率.