游客
题文

(本小题满分12分)已知椭圆的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

求下列函数的定义域

已知函数f(x)=和图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5。
(1)求实数b,c的值;
(2)求函数f(x)在区间[-1,1]上的最小值;
(3)若函数y=f(x)图象上存在两点P,Q,使得对任意给定的正实数a都满足△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上,求点P的横坐标的取值范围。

已知A1,A2,B是椭圆=1(a>b>0)的顶点(如图),直线l与椭圆交于异于顶点的P,Q两点,且l∥A2B,若椭圆的离心率是,且|A2B|=
(1)求此椭圆的方程;
(2)设直线A1P和直线BQ的倾斜角分别为α,β,试判断α+β是否为定值?若是,求出此定值;若不是,说明理由。

已知数列{}为等差数列,公差d≠0,同{}中的部分项组成的数列为等比数列,其中
(1)求数列{}的通项公式;
(2)记

如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点。
(1)求证:EF⊥PD;
(2)求直线PF与平面PBD所成的角的大小;
(3)求二面角E-PF-B的大小。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号