(.陕西省,第22题,7分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班一
名代表参赛,九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛,
经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛)。规则如下:两人同时随机
各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶
数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止。如果小亮和小丽按上述
规则各掷一次骰子,那么请你解答下列问题:
(1)小亮掷得向上一面的点数为奇数的概率是多少?
(2)该游戏是否公平?请用列表或树状图等方法说明理由。(骰子:六个面上分别刻有1、2、3、4、5、6 个小圆点的小正方体)
问题:如图,在 中, , , , 的平分线 , 分别与直线 交于点 , ,求 的长.
答案: .
探究:(1)把"问题"中的条件" "去掉,其余条件不变.
①当点 与点 重合时,求 的长;
②当点 与点 重合时,求 的长.
(2)把"问题"中的条件" , "去掉,其余条件不变,当点 , , , 相邻两点间的距离相等时,求 的值.
小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体 是抛物线的一部分,抛物线的顶点 在 轴上,杯口直径 ,且点 , 关于 轴对称,杯脚高 ,杯高 ,杯底 在 轴上.
(1)求杯体 所在抛物线的函数表达式(不必写出 的取值范围);
(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体 所在抛物线形状不变,杯口直径 ,杯脚高 不变,杯深 与杯高 之比为0.6,求 的长.
如图,在 中, ,点 , 分别在边 , 上, ,连结 , .
(1)若 ,求 , 的度数;
(2)写出 与 之间的关系,并说明理由.
拓展小组研制的智能操作机器人,如图1,水平操作台为 ,底座 固定,高 为 ,连杆 长度为 ,手臂 长度为 .点 , 是转动点,且 , 与 始终在同一平面内.
(1)转动连杆 ,手臂 ,使 , ,如图2,求手臂端点 离操作台 的高度 的长(精确到 ,参考数据: , .
(2)物品在操作台 上,距离底座 端 的点 处,转动连杆 ,手臂 ,手臂端点 能否碰到点 ?请说明理由.
Ⅰ号无人机从海拔 处出发,以 的速度匀速上升,Ⅱ号无人机从海拔 处同时出发,以 的速度匀速上升,经过 两架无人机位于同一海拔高度 .无人机海拔高度 与时间 的关系如图.两架无人机都上升了 .
(1)求 的值及Ⅱ号无人机海拔高度 与时间 的关系式;
(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.