游客
题文

(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=1,AB=,点E为PD的中点,点F在棱DC上移动。

(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点F在DC的何处,都有PF⊥ AE
(3)求二面角E-AC-D的余弦值。

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

如图所示,平面ABC,CE//PA,PA=2CE=2。
(1)求证:平面平面APB;(2)求二面角A—BE—P的正弦值。

(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:
①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);
②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);
再利用可求得,进而求得
根据上述结论求下列问题:
(1)当)时,求数列的通项公式;
(2)当)时,求数列的通项公式;
(3)当)时,记,若能被数整除,求所有满足条件的正整数的取值集合.

(本题满分16分,第(1)小题8分,第(2)小题8分)
己知双曲线的中心在原点,右顶点为(1,0),点、Q在双曲线的右支上,点,0)到直线的距离为1.
(1)若直线的斜率为且有,求实数的取值范围;
(2)当时,的内心恰好是点,求此双曲线的方程.

(本题满分16分,第(1)小题6分,第(2)小题10分)

如图,已知点是边长为的正三角形的中心,线段经过点,并绕点转动,分别交边于点;设,其中
(1)求表达式的值,并说明理由;
(2)求面积的最大和最小值,并指出相应的的值.

(本题满分14分,第(1)小题6分,第(2)小题8分)
设全集,关于的不等式)的解集为
(1)分别求出当时的集合
(2)设集合,若中有且只有三个元素,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号