、宇航员登上某一星球并在该星球表面做实验,用一根不可伸缩的轻绳跨过轻质定滑轮,一端挂一吊椅,另一端被坐在吊椅上的宇航员拉住,如图所示。宇航员的质量m1=65kg,吊椅的质量m2=15kg,当宇航员与吊椅以a=1m/s2的加速度匀加速上升时,宇航员对吊椅的压力为l75N。(忽略定滑轮摩擦)
(1)求该星球表面的重力加速度g;
(2)若该星球的半径R=6×106m,地球半径R0=6.4×106m,地球表面的重力加速度g0=10m/s2,求该星球的平均密度与地球的平均密度之比。
如图所示,甲、乙两电路中电源电动势均为E=12V,内阻均为r=3Ω,电阻R0=1Ω,直流电动机内阻R0’=1Ω,调节滑动变阻器R1、R2使甲、乙两电路的电源输出功率均为最大,且此时电动机刚好正常工作.已知电动机的额定功率为6W,求:(1)电动机的焦耳热功率P热;(2)此时滑动变阻器R1、R2连入电路部分的阻值.
如图所示,在x轴下方的区域内存在+y方向的匀强电场,电场强度为E.在x轴上方以原点O为圆心、半径为R的半圆形区域内存在匀强磁场,磁场的方向垂直于xoy平面向外,磁感应强度为B.﹣y轴上的A点与O点的距离为d,一个质量为m、电荷量为q的带正电粒子从A点由静止释放,经电场加速后从O点射入磁场,不计粒子的重力.
(1)求粒子在磁场中运动的轨道半径r;
(2)要使粒子进人磁场之后不再经过x轴,求电场强度的取值范围;
(3)改变电场强度,使得粒子经过x轴时与x轴成θ=30°的夹角,求此时粒子在磁场中的运动时间t及经过x轴的位置坐标值x0.
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。
如图所示,A点距坐标原点的距离为l,坐标平面内有边界过A点和坐标原点O的圆形匀强磁场区域,磁场方向于垂直坐标平面向里。有一电子(质量为m、电荷量为e)从A点以初速度v0平行x轴正方向射入磁场区域,在磁场中运行,从x轴上的B 点射出磁场区域,此时速度方向与x轴的正方向之间的夹角为60°,求:
⑴磁场的磁感应强度大小;
⑵磁场区域的圆心O1的坐标;
⑶电子在磁场中运动的时间。
受动画片《四驱兄弟》的影响,越来越多的小朋友喜欢上了玩具赛车。某玩具赛车充电电池的输出功率P随电流I变化的图象如图所示。
(1)求该电池的电动势E和内阻r;
(2)求该电池的输出功率最大时对应的外电阻R(纯电阻);