游客
题文

(本小题满分12分)已知函数,其中为常数,且
(1)若,求函数的表达式;
(2)在(1)的条件下,设函数,若在区间上是单调函数,求实数的取值范围;
(3)是否存在实数使得函数上的最大值是4?若存在,求出的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质 复合三角函数
登录免费查看答案和解析
相关试题

(本小题满分12分)设函数的定义域为R,当时,,且对任意,都有,且
(1)求的值;
(2)证明:在R上为单调递增函数;
(3)若有不等式成立,求的取值范围。

(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把)叫闭函数。(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围。

(12分)已知定义域为的单调函数图关于点对称,当时,.
(1)求的解析式;
(2)若对任意的,不等式恒成立,求实数的取值范围.

(本小题满分12分)函数是定义在上的奇函数,且.
(1)求实数的值.(2)用定义证明上是增函数;
(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值(无需说明理由).

(1)二次函数满足:为偶函数且,求的解析式;
(2)若函数定义域为,求取值范围。
(3)若函数值域为,求取值范围。
(4)若函数上单调递减,求取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号