(本小题满分12分)椭圆(
)的上顶点为
,
是
上的一点,以
为直径的圆经过椭圆
的右焦点
.
(1)求椭圆的方程;
(2)动直线与椭圆
有且只有一个公共点,问:在
轴上是否存在两个定点,它们到直线
的距离之积等于
?如果存在,求出这两个定点的坐标;如果不存在,说明理由.
已知集合,集合
(1)求集合;
(2)若,求
的取值范围.
若数列的前
项和为
,
且
.
(1)求,
;
(2)求证:数列是常数列;
(3)求证:
在△中,已知
,且
.
(1)试确定△的形状;
(2)求的范围.
某批发站全年分批购入每台价值为3000 元的电脑共4000台,每批都购入台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用(运费和保管费),请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.
已知数列的前
项和
,
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和.