为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.
(1)求第四小组的频率和参加这次测试的学生人数;
(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?
(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
如图,在正三棱锥 中, , .
(1)若 的中点为 , 的中点为 ,求 与 的夹角;
(2)求 的体积.
在 中,内角 所对的边分别为 .已知 , .
(Ⅰ)求 的值;
(Ⅱ)求 的值.
已知函数 .
(Ⅰ)求曲线 的斜率为1的切线方程;
(Ⅱ)当 时,求证: ;
(Ⅲ)设 ,记 在区间 上的最大值为 ,当 最小时,求 的值.
已知椭圆 的右焦点为 ,且经过点 .
(Ⅰ)求椭圆 C的方程;
(Ⅱ)设 O为原点,直线 与椭圆 C交于两个不同点 P, Q,直线 与 x轴交于点 M,直线 与 x轴交于点 N,若 ,求证:直线 l经过定点.
如图,在四棱锥 中, ,底部 ABCD为菱形, E为 CD的中点.
(Ⅰ)求证: ;
(Ⅱ)若 ,求证: ;
(Ⅲ)棱 PB上是否存在点 F,使得 ?说明理由.