为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.
(1)求第四小组的频率和参加这次测试的学生人数;
(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?
(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
如图,菱形的边长为4,
,
.将菱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
(1)求证:平面
;
(2)求证:平面平面
;
(3)求二面角的余弦值.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量![]() |
1≤n≤3 |
4≤n≤6 |
7≤n≤9 |
10≤n≤12 |
n≥13 |
顾客数(人) |
![]() |
20 |
10 |
5 |
![]() |
结算时间(分钟/人) |
0.5 |
1 |
1.5 |
2 |
2.5 |
已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定与
的值;
(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.
已知函数,
的最大值是1,最小正周期是
,其图像经过点
.
(1)求的解析式;
(2)设、
、
为△ABC的三个内角,且
,
,求
的值.
已知数列是各项均不为0的等差数列,公差为
,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前
项和.
(1)求数列的通项公式
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
已知函数(
,
,
且
)的图象在
处的切线与
轴平行.
(1)确定实数、
的正、负号;
(2)若函数在区间
上有最大值为
,求
的值.