游客
题文

(本题6分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE。

(1)求证:∠B=∠D;
(2)若AB= ,BC-AC=2,求CE的长。

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:

收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88

(1)根据上述数据,将下列表格补充完整.

整理、描述数据:

成绩 /

88

89

90

91

95

96

97

98

99

学生人数

2

1

  

3

2

1

  

2

1

数据分析:样本数据的平均数、众数和中位数如下表

平均数

众数

中位数

93

  

91

得出结论:

(2)根据所给数据,如果该校想确定七年级前 50 % 的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为  分.

数据应用:

(3)根据数据分析,该校决定在七年级授予测评成绩前 30 % 的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.

如图,抛物线 y = 1 2 x 2 + bx + c 与直线 y = 1 2 x + 3 分别相交于 A B 两点,且此抛物线与 x 轴的一个交点为 C ,连接 AC BC .已知 A ( 0 , 3 ) C ( 3 , 0 )

(1)求抛物线的解析式;

(2)在抛物线对称轴 l 上找一点 M ,使 | MB MC | 的值最大,并求出这个最大值;

(3)点 P y 轴右侧抛物线上一动点,连接 PA ,过点 P PQ PA y 轴于点 Q ,问:是否存在点 P 使得以 A P Q 为顶点的三角形与 ΔABC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 与边 BC AC 分别交于 D E 两点,过点 D DH AC 于点 H

(1)判断 DH O 的位置关系,并说明理由;

(2)求证: H CE 的中点;

(3)若 BC = 10 cos C = 5 5 ,求 AE 的长.

(1)如图①,在四边形 ABCD 中, AB / / CD ,点 E BC 的中点,若 AE BAD 的平分线,试判断 AB AD DC 之间的等量关系.

解决此问题可以用如下方法:延长 AE DC 的延长线于点 F ,易证 ΔAEB ΔFEC 得到 AB = FC ,从而把 AB AD DC 转化在一个三角形中即可判断.

AB AD DC 之间的等量关系  

(2)问题探究:如图②,在四边形 ABCD 中, AB / / CD AF DC 的延长线交于点 F ,点 E BC 的中点,若 AE BAF 的平分线,试探究 AB AF CF 之间的等量关系,并证明你的结论.

近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级: A .非常了解; B .比较了解; C .基本了解; D .不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.

对雾霾天气了解程度的统计表

对雾霾天气了解程度

百分比

A .非常了解

5 %

B .比较了解

15 %

C .基本了解

45 %

D .不了解

n

请结合统计图表,回答下列问题:

(1)本次参与调查的学生共有   n =   

(2)扇形统计图中 D 部分扇形所对应的圆心角是  度;

(3)请补全条形统计图;

(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号