已知函数(
)在区间
上有最大值
和最小值
.设
.
(1)求、
的值;
(2)若不等式在
上恒成立,求实数
的取值范围;
(3)若有三个不同的实数解,求实数
的取值范围.
(1)当你手握直角三角板,其斜边保持不动,将其直角顶点提起一点,则直角在平面内的正投影是锐角、直角 还是钝角?
(2)根据第(1)题,你能猜想某个角在一个平面内的正投影一定大于这个角吗?如果正确,请证明;如果错误,则利用下列三角形举出反例:△ABC中,,
,以∠BAC为例。
在边长为a的正方形ABCD所在平面外取一点P,使PA⊥平面ABCD,且PA=AB,在AC的延长线上取一点G。
(1)若CG=AC,求异面直线PG与CD所成角的大小;
(2)若CG=AC,求点C到平面PBG的距离;
(3)当点G在AC的延长线上运动时(不含端点C),求二面角P-BG-C的取值范围。
已知函数,
.
(1)设是函数
图象的一条对称轴,求
的值;
(2)求函数的单调递增区间.
已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线上,△ABC的重心与此抛物线的焦点F重合(如图)
(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标;
(3)求BC所在直线的方程.
将圆x2 + y2 + 2x – 2y = 0按向量a= (1,–1)平移得到圆O,直线l和圆O相交于A、B两点,若在圆O上存在点C,使,且
=
a.
(1)求的值;(2)求弦AB的长;(3)求直线l的方程.