已知函数(
)在区间
上有最大值
和最小值
.设
.
(1)求、
的值;
(2)若不等式在
上恒成立,求实数
的取值范围;
(3)若有三个不同的实数解,求实数
的取值范围.
(本小题满分10分)等差数列中,
,公差
且
成等比数列,前
项的和为
.
(1)求及
;
(2)设,
,求
.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(∁UA)∩B;
(2)若A∩C≠∅,求a的取值范围.
证明:(1)对任一正整,都存在整数
,使得
成等差数列。
(2)存在无穷多个互不相似的三角形,其边长
为正整数且
成等差数列。
已知,
且.
(Ⅰ)当时,求
在
处的切线方程;
(Ⅱ)当
时,设
所对应的自变量取值区间的长度为
(闭区间
的长度定义为
),试求
的最大值;
(Ⅲ)是否存在这样的,使得当
时,
?若存在,求出
的取值范围;若不存在,请说明理由.
已知椭圆的离心率为
,椭圆的左、右两个顶点分别为
,
,直线
与椭圆相交于
两点,经过三点
的圆与经过三点
的圆分别记为圆C1与圆C2.
(1)求椭圆的方程;
(2)求证:无论如何变化,圆C1与圆C2的圆心距是定值;
(3)当变化时,求圆C1与圆C2的面积的和
的最小值.