游客
题文

(本小题满分16分)设常数,函数
(1)当时,判断并证明函数的单调性;
(2)若函数的是奇函数,求实数a的值;
(3)当时,若存在区间,使得函数的值域为,求实数的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 函数的基本性质
登录免费查看答案和解析
相关试题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.

已知函数
(Ⅰ)当时,求该函数的定义域和值域;
(Ⅱ)如果在区间上恒成立,求实数的取值范围

如图,四棱锥中,⊥底面,底面为梯形,,且,点是棱上的动点.
(Ⅰ)当∥平面时,确定点在棱上的位置;
(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.

中,分别为角所对的边,且
(Ⅰ)求角
(Ⅱ)若的周长为,求函数的取值范围.

是平面上的两个向量,若向量互相垂直.
(Ⅰ)求实数的值;
(Ⅱ)若,且,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号