某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示.
(I)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?
设平面直角坐标系中,设二次函数
的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(1)求实数的取值范围;
(2)求圆C 的方程;
(3)问圆C 是否经过某定点(其坐标与无关)?请证明你的结论.
(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
(本小题满分l2分)
已知函数
(1)若,求函数
的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量
使得
的值相等,若存在,请求出
的范围,若不存在,请说明理由?
(本小题满分12分)
如图,在平面直角坐标系中,椭圆
的焦距为2,且过点
.
求椭圆的方程;
若点,
分别是椭圆
的左、右顶点,直线
经过点
且垂直于
轴,点
是椭圆上异于
,
的任意一点,直线
交
于点
(ⅰ)设直线的斜率为
直线
的斜率为
,求证:
为定值;
(ⅱ)设过点垂直于
的直线为
.求证:直线
过定点,并求出定点的坐标.
(本小题满分12分)
已知椭圆M的中心为坐标原点,且焦点在x轴上,若M的一个顶点恰好是抛物线的焦点,M的离心率
,过M的右焦点F作不与坐标轴垂直的直线
,交M于A,B两点。
(1)求椭圆M的标准方程;
(2)设点N(t,0)是一个动点,且,求实数t的取值范围。