已知动圆过定点
,且与直线
相切;椭圆
的对称轴为坐标轴,中心为坐标原点
,
是其一个焦点,又点
在椭圆
上.
(1)求动圆圆心的轨迹
的方程和椭圆
的方程;
(2)过点作直线
交轨迹
于
,
两点,连结
,
,射线
,
交椭圆
于
,
两点,求
面积的最小值.
(3)附加题(本题额外加5分):过椭圆上一动点
作圆
的两条切线,切点分别为
,求
的取值范围.
已知复数,实数
取什么值时,
(1)复数是实数;(2复数
是纯虚数;(3)复数
对应的点位于第三象限.
(3)(本小题满分7分)选修4—5:不等式选讲
已知函数不等式
在
上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足求
的最大值.
(2)(本小题满分7分)选修4—4:坐标系与参数方程
在直角坐标系中,曲线C的参数方程为
为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为
.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(1)(本小题满分7分)选修4—2:矩阵与变换
已知二阶矩阵有特征值
及对应的一个特征向量
.
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为,求曲线C的方程.
(本小题满分14分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)求时,证明:对于任意的
且
,恒有
(Ⅲ)设是函数
的零点,实数
满足
,试探究实数
、
、
的大小关系.