在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.
化简:6a2b+2ab-3a2b2-7a-5ba-4b2a2-6a2b
已知,如图,正方形ABCD,菱形EFGP,点E、F、G分别在AB、AD、CD上,延长DC,PHDC于H。
(1)求证:GH=AE
(2)若菱形的周长为20cm,
求
的面积
“震再无情人有请”,玉树地震牵动了全国人民的心,武警部队接到命令,运送一批救灾物资到灾区,货车在公路A处加满油后,以60千米/小时的速度匀速行使,前往与A处相距360千米的灾区B处.下表记录的是货车一次加满油后油箱内余油量y(升)与行使时间x(小时)之间的关系:
行使时间x(小时) |
0 |
1 |
2 |
3 |
4 |
余油量y(升) |
150 |
120 |
90 |
60 |
30 |
(1)请你用学过的函数中的一种建立y与x之间的函数关系式,并说明选择这种函数的理由(不要求写出自变量的取值范围);
(2)如果货车的行使速度和每小时的耗油量都不变,货车行使4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达灾区B处卸去货物后能顺利返回D处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)
如图,点E、F在AB上,且AF=BE,AC=BD,AC∥BD.
求证:CF∥DE.