从2开始,连续的偶数相加,它们和的情况如下表:
(1)如果n=8时,那么S的值为________;
(2)由表中的规律猜想:用n的代数式表示S的公式为S=2+4+6+8+…+2n=_________;
(3)由上题的规律计算300+302+304+…+2010+2012的值(要有计算过程).
在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.
如图,已知抛物线(
)的对称轴为直线
,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴上的一个动点,求使△BPC为直角三角形的点P的坐标.
观察下表
我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:
(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;
(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,
①求x,y的值;
②在此条件下,第n格的特征是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.
在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
(1)图1中"统计与概率"所在扇形的圆心角为度;
(2)图2、3中的
,
;
(3)在60课时的总复习中,唐老师应安排多少课时复习"图形与几何"内容?
如图,在△ABC中,D.E分别是AB、AC边的中点.求证:DEBC.