设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.
(1)求f(x)的解析式;
(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.
已知实数a满足1<a≤2,设函数f (x)=x3-
x2+a x.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于或等于10.
已知a >0且
命题P:函数内单调递减;
命题Q:曲线轴交于不同的两点.
如果“P\/Q”为真且“P/\Q”为假,求a的取值范围.
已知数列满足
(1)设,当
时,求数列
的通项公式.
(2)设求正整数
使得一切
均有
已知等差数列{}中,
=14,前10项和
.(1)求
;
(2)将{}中的第2项,第4项,…,第
项按原来的顺序排成一个新数列{
},令
,求数列{
}的前
项和
.
化简: