(本题10分)如图,数轴上的三点A、B、C分别表示有理数a、b、c.(O为原点)
(1)a-b 0,a+c 0,b-c 0.
(用“<”或“>”或“=”号填空)
化简:|a-b|-|a+c|+|b-c|
(2)若数轴上两点A、B对应的数分别为-3、-1,点P为数轴上一动点,其对应的数为x.
①若点P到点A、点B的距离相等,则点P对应的数x为 ;
②若点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长
度/秒的速度同时从原点O向左运动.当点A与点B之间的距离为1个单位长度时,求点P所对应的数
x是多少?
口袋中装有2个小球,它们分别标有数字
和
;
口袋中装有3个小球,它们分别标有数字
,
和
.每个小球除数字外都相同.甲、乙两人玩游戏,从
两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.
图1是某市2007年2月5日至14日每天最低气温的折线统计图.
(1)图2是该市2007年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;
(2)在这10天中,最低气温的众数是,中位数是,方差是.
已知,如图,延长的各边,使得
,
,顺次连接
,得到
为等边三角形.
求证:(1);
(2)为等边三角形.
已知,如图,在平行四边形ABCD中,∠BAD的平分线交BC边于点E.
求证:BE=CD.
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?