某化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
先化简,再求值:,其中
满足方程
.
解方程:
点P在图形M上, 点Q在图形N上,记为线段PQ长度的最大值,
为线段PQ长度的最小值,图形M,N的平均距离
.
(1)在平面直角坐标系中,⊙O是以O为圆心,2的半径的圆,且A
,B
,求
及
;(直接写出答案即可)
(2)半径为1的⊙C的圆心C与坐标原点O重合,直线与
轴交于点D,与
轴交于点F,记线段DF为图形G,求
;
(3)在(2)的条件下,如果⊙C的圆心C从原点沿轴向右移动,⊙C的半径不变,且
,求圆心C的横坐标.
在△ABC中,AB=AC,∠BAC<60°,把线段BC绕点B逆时针旋转60°至BP;如图所示位置有∠ABQ=60°,∠BCQ=150°.
(1)若∠BAC=30°,则∠ABP=度;若∠BAC=α,则∠ABP=(用α表示);
(2)求证:△ABQ为等边三角形;
(3)四边形CBPQ的面积为1,求△ABC的面积.
已知关于的一元二次方程
.
(1)若是该方程的一个根,求
的值;
(2)无论取任何值,该方程的根不可能为
,写出
的值,并证明;
(3)若为正整数,且该方程存在正整数解,求所有正整数
的值.