(本小题满分为10分)
已知点P(-2,-3)和以点Q为圆心的圆。
(Ⅰ)求以PQ为直径的圆的方程;
(Ⅱ)设⊙与⊙Q相交于点A、B,求直线AB的一般式方程。
(Ⅲ)设直线:
与圆Q相交于点C、D,求截得的弦CD的长度最短时
的值。
(本小题满分12 分)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为
,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分
的分布列与数学期望
.
(本小题满分12 分)已知函数是定义在R上的不恒为零的函数,且对于任意的
、
∈R,都满足
,若
=1,
.
(1)求、
、
的值;
(2)猜测数列通项公式,并用数学归纳法证明.
(本小题满分12 分)如图,在四棱锥中,底面
为直角梯形,且
,
,侧面
底面
, 若
.
(1)求证:平面
;
(2)求二面角的余弦值.
(本小题满分10 分)已知(
)的展开式中
的系数为11.
(1)求的系数的最小值;
(2)当的系数取得最小值时,求
展开式中
的奇次幂项的系数之和.
(本小题满分14分)已知数列{an}的前n项和为,且满足
,数列
满足
,
为数列
的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若对任意的,不等式
恒成立,求实数
的取值范围;
(Ⅲ)是否存在正整数m,n(1<m<n),使得,
,
成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.