游客
题文

(·辽宁沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.

(1)求点A和点C的坐标;
(2)当0<t<30时,求m关于t的函数关系式;
(3)当m=35时,请直接写出t的值;
(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

解关于x的方程:+5xx-3)=0.

(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线yax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.

(1)写出顶点B的坐标(用a的代数式表示);
(2)求抛物线的解析式:
(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.

(本题8分)如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD
交⊙O于点D,DE⊥BC,交BC的延长线于点E,RD交AC于点F.

(1)求证:DE是⊙O的切线;
(2)若CE=2,ED=4,求⊙O的半径.

(本题8分)某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每问每年交各种费用5000元.
(1)当每间商铺的年租金定为13万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?
(3)当每间商铺的年租金定为多少万元时,该公司的年收益最大?(假设年租金每次增加的幅度必须为5000元的倍数)

(本题8分)如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.

(1)求证:△ABD∽△AEB;
(2)若AD=1,DE=3,求BD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号