(·辽宁锦州)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
计算:.
已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动.
(1)当点B与点G重合时,求此时t的值;
(2)直接写出S与t之间的函数关系式和相应的自变量取值范围;
(3)当t = 4时,将△EFG绕点E顺时针旋转一个角度(
),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.
如图,一次函数分别交y轴、x轴于A、B两点,抛物线
过A、B两点,作垂直x轴的直线
,交x轴于H,交直线AB于M,交这个抛物线于N.
(1)求这个抛物线的解析式;
(2)若M在第一象限,求当t取何值时,MN有最大值?最大值是多少?
(3)若∠ABO=∠BNH,求t的值.
已知,矩形ABCD中,延长BC至E,使BE = BD,F为DE的中点,连结AF、CF.
(1)若AB = 3,AD = 4,求CF的长;
(2)求证:∠ADB = 2∠DAF.
某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言的人数比为,请结合图中相关数据回答下列问题:
(1)A组有人,C组有人,E组有人,并补全直方图;
(2)该年级共有学生600人,请估计全年级在这天发言次数不少于20的人数;
(3)已知A组发言的学生中恰有一位女生,E组发言的学生中恰有两位男生,现从A组与E组中分别抽一位学生写报告,求所抽的两位学生至多有一位男生的概率.