(本小题满分8分,每题4分)
(1)化简:;
(2)关于的一元二次方程
有两个不相等的实数根,求
的取值范围
以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题.
(1) , .
(2)请补全条形统计图;
(3)在扇形统计图中,"软件"所对应的扇形的圆心角是 度;
(4)若该公司新招聘600名毕业生,请你估计"总线"专业的毕业生有 名.
先化简,再求值: ,其中 .
计算: .
平面直角坐标系 中,抛物线 过点 , , , , .顶点 不在第一象限,线段 上有一点 ,设 的面积为 , 的面积为 , .
(1)用含 的式子表示 ;
(2)求点 的坐标:
(3)若直线 与抛物线 的另一个交点 的横坐标为 ,求 在 时的取值范围(用含 的式子表示).
如图, 为等边 的外接圆,半径为2,点 在劣弧 上运动(不与点 , 重合),连接 , , .
(1)求证: 是 的平分线;
(2)四边形 的面积 是线段 的长 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;
(3)若点 , 分别在线段 , 上运动(不含端点),经过探究发现,点 运动到每一个确定的位置, 的周长有最小值 ,随着点 的运动, 的值会发生变化,求所有 值中的最大值.