游客
题文

平面直角坐标系 xOy 中,抛物线 G : y = a x 2 + bx + c ( 0 < a < 12 ) 过点 A ( 1 , c - 5 a ) B ( x 1 3 ) C ( x 2 3 ) .顶点 D 不在第一象限,线段 BC 上有一点 E ,设 ΔOBE 的面积为 S 1 ΔOCE 的面积为 S 2 S 1 = S 2 + 3 2

(1)用含 a 的式子表示 b

(2)求点 E 的坐标:

(3)若直线 DE 与抛物线 G 的另一个交点 F 的横坐标为 6 a + 3 ,求 y = a x 2 + bx + c 1 < x < 6 时的取值范围(用含 a 的式子表示).

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 一次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,

(1)写出图中所有的全等三角形;
(2)求证:DE∥BF.

已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.
(1)求每个足球和每个篮球的售价;
(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?

某校有学生2000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,丙将结果绘制成如下的统计图.

请根据以上信息,完成下列问题:
(1)本次调查的样本容量是
(2)某位同学被抽中的概率是
(3)据此估计全校最喜爱篮球运动的学生人数约有名;
(4)将条形统计图补充完整.

(1)计算:
(2)先化简,再求值:,其中

如图1,抛物线与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).

(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号