(达州)化简,并求值,其中a与2、3构成△ABC的三边,且a为整数.
如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF.
(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)
(2)若矩形ABCD的周长为20,四边形AEDF的面积是否存在最大值?如果存在,请求出最大值;如果不存在,请说明理由.
(3)若AB=,BC=
,当
.
满足什么条件时,四边形AEDF能成为一个矩形?(不必说明理由)
某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:
每件T恤的利润(元) |
销售量(件) |
|
第一个月 |
||
清仓时 |
(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?
如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.
(1)AD是⊙O的切线吗?为什么?
(2)若OD⊥AB,BC=5,求⊙O的半径.
随着青奥会的临近,青奥特许商品销售逐渐火爆.甲.乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二.三月份销售额的月平均增长率是乙店二.三月份月平均增长率的2倍.
(1)若设乙店二.三月份销售额的月平均增长率为,则甲店三月份的销售额为万元,乙店三月份的销售额为万元.(用含
的代数式表示)
(2)甲店.乙店这两个月销售额的月平均增长率各是多少?
如图,在梯形中,
,
.点
,
,
分别在边
,
,
上,
.
(1)求证:四边形是平行四边形;
(2)当时,求证:四边形
是矩形.