(绵阳)如图,反比例函数(
)与正比例函数
相交于A(1,k),B(﹣k,﹣1)两点.
(1)求反比例函数和正比例函数的解析式;
(2)将正比例函数的图象平移,得到一次函数
的图象,与函数
(
)的图象交于C(
,
),D(
,
),且
,求b的值.
写出下列命题的已知、求证,并完成证明过程.
命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边
”) .
已知:如图,___ _▲_ ____.
求证:___ _▲_ ____.
证明:
如图,在一滑梯侧面示意图中,BD∥AF,BC⊥AF于点C,DE⊥AF于
点E.BC=1.8m,BD=0.5m,∠A=45º,∠F=29º.
(1)求滑道DF的长(精确到0.1m);
(2)求踏梯AB底端A与滑道DF底端F的距离AF(精确到0.1m).
(参考数据:sin29º≈0.48,cos29º≈0.87,tan29º≈0.55)
(6分)某市为了提高学生的安全防范意识和能力,每年在全市中小学学生中举
行安全知识竞赛,为了了解今年全市七年级同学的竞赛成绩情况,小强随机调查了一些七年
级同学的竞赛成绩,根据收集到的数据绘制了参与调查学生成绩的频数分布直方图和其中合
格学生成绩的扇形统计图如下:
根据统计图提供的信息,解答以下问题:
(1)小强本次共调查了多少名七年级同学的成绩?被调查的学生中成绩合格的频率是多少?
(2)该市若有10000名七年级学生,请你根据小强的调查统计结果估计全市七年级学生中有多少名学生竞赛成绩合格?对此你有何看法?
(3)填写下表:
成绩 |
不合格 |
合格但不优秀 |
合格且优秀 |
频率 |
0.2 |
▲ |
▲ |
先化简,再求值:,其中
.
如图,已知直角梯形ABCD中,AD//BC, DC⊥BC,AB=5,BC=6,∠B=53°.点O为BC边上的一个点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,交线段OD于点M,交射线BC于点N,连结MN.
(1)当BO=AD时,求BP的长;
(2)在点O运动的过程中,线段 BP与MN能否相等?若能,请求出当BO为多长时BP=MN;若不能,请说明理由;
(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值范围.
(参考数据:cos53°≈0.6;sin53°≈0.8;t
an74°
3.5)