(成都)(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
i)求证:△CAE∽△CBF;
ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
≠
(公式法)
(因式分解法)
.按指定的方法解下列方程:
(1)(配方法);
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连结BE.
⑴求证:△ACD≌△BCE; ⑵延长BE至Q,P为BQ上一点,连结CP、CQ使CP=CQ=5,若PQ=6时,求AO的长.
.我市准备挑选一名跳高运动员参加省中学生运动会,对跳高队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:
甲:170 165 168 169 172 173 168 167
乙:163 174 173 162 163 171 170 176
⑴甲、乙两名运动员的跳高平均成绩分别是多少?
⑵哪名运动员的成绩更为稳定?为什么?
⑶若预测,跳过165cm就很可能获得冠军.该校为了获得冠军,可能选哪位运动员参赛?为什么?若预测跳过170cm才能得冠军,可能选哪位运动员参赛?为什么?