(·杭州市 第23题 12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5小时与乙相遇,……,请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式
(2)当20<y<30时,求t的取值范围
(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象
(4)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?
如图,点在同一条直线上,
,求证:
.
解不等式组并把解集在数轴上表示出来.
计算:.
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC.点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H.
(1)求点B的坐标;
(2)设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;当t为何值时,△HBP的面积最大,并求出最大面积;
(3)分别以P、H为圆心,PC、HB为半径作⊙P和⊙H,当两圆外切时,求此时t的值.
某商店决定购进A、B两种纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件 B 种纪念品可获利润30元,在(2)的各种进货方案中,哪一种方案获利最大?最大利润是多少元?