如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .
如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点如图1,矩形ABCD中,AB=3,BC=1,请在边CD上作出A,B两点(除C,D以外)的勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).
(1)如图2,矩形ABCD中,
AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点H为M,N两点的勾股点,且点H在直线l上.
①当t=4,求PH的长.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).
在平面直角坐标系中,已知抛物线与
轴交于点
(-1,0)、
(3,0),与
轴的正半轴交于点
,顶点为
.
求抛物线解析式及顶点
的坐标;
如图,过点E作BC平行线,交
轴于点F,在不添加线和字母情况下,图中面积相等的三角形有:.
将抛物线向下平移,与
轴交于点M、N,与
轴的正半轴交于点P,顶点为Q.在四边形MNQP中满足S△NPQ = S△MNP,求此时直线PN的解析式
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.求证:AD⊥DC
若
,
,求
的值以及AB的长.
某块试验田里的农作物每天的需水量(千克)与生长时间
(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.
分别求出
≤40和
≥40时
与
之间的关系式
如果这些农作物每天的需水量大于或等于4000千克时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?
我市教育部门为了了解初三学生身体素质状况,抽取了某校学生进行体育测试。下列图表是该校初三学生的男生1000米跑、女生800米跑的考试成绩中分别抽取的10个数据.
考生 编号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
男生 成绩 |
3′05〞 |
3′11〞 |
3′53〞 |
3′10〞 |
3′55〞 |
3′30〞 |
3′25〞 |
3′19〞 |
3′27〞 |
3′55〞 |
这10名男生成绩极差为
按《镇江市中学生体育成绩考查》规定,女生800米跑成绩不超过3′35 〞就可以得满分.该校学生有490人,男生比女生少70人. 请你根据上面抽样的结果,估算该校考生中有多少名女生该项考试得满分?