定义:长宽比为:1(n为正基数)的矩形称为株为
矩形.下面,我们通过折叠的方式折出一个
矩形.如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF
则四边形BCEF为矩形
证明:设正方形ABCD的边长为1,则BD==
.
由折叠性质可知BG=BC=1,,则四边形BCEF为矩形
阅读以上内容,回答下列问题:
在图①中,所有与CH相等的线段是 ,tan的值是
已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图
。
求证:四边形BCMN是矩形
将图②中的矩形BCMN沿用(2)中的操作3次后,得到一个“
矩形”,则n的值是
某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册费9元,用200元恰好可以买到2件文件衫和5本相册.
(1)求每件文化衫和每本相册的价格分别为多少元?
(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?
某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本
和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.
(1)请写出y关于x的关系式;
(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?
(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?
A |
B |
|
成本(元) |
50 |
35 |
利润(元) |
20 |
15 |
九年级六班的一个综合实践活动小组去A,B两超市调查去年和今年“十一”期间的销售情况,如图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,请你分别求出A,B两个超市今年“十一”期间的销售额.
小明画了如下的一张表格,并在表格中圈出了一个竖列上相邻的三个数,他把这三个数的和告诉了同伴,要同伴求出这三个数.
(1)当这三个数的和是138时,能否求出这三个数?请你也试一试;
1 |
4 |
7 |
10 |
13 |
16 |
19 |
22 |
25 |
28 |
31 |
34 |
37 |
40 |
43 |
46 |
49 |
52 |
55 |
58 |
61 |
64 |
67 |
70 |
(2)当这三个数的和是148呢?
求不等式组的整数解,并在数轴上表示出来.