在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
在一条东西走向的马路上,有少年宫、学校、商场、医院四家公共场所。已知少年宫在学校东300米,商场在学校西200米,医院在学校东500米。若将马路近似地看成一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100米。
(1)在数轴上表示出四家公共场所的位置;
(2)计算少年宫与商场之间的距离。
10袋小麦以每袋150千克为标准,超过150千克的部分记为正数,不足150千克的部分记为负数,记录情况如下表:
编号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
差值/kg |
-6 |
-3 |
-1 |
+7 |
+3 |
+4 |
-3 |
-2 |
-2 |
+1 |
(1)与标准重量相比较,10袋小麦总计超过或不足多少千克?
(2)每袋小麦的平均重量是多少千克?
化简或求值
(1)(2)
(3) 已知。求
的值.
(4)如果代数式的值与字母x所取的值无关,试求代数式
的值
计算题(2)
(4)
如图,已知,
是一次函数
的图象和反比例函数
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线与
轴的交点
的坐标及△
的面积;
(3)求不等式的解集(请直接写出答案).