如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.
解不等式并写出它的所有非负整数解.
已知2a2+3a-6=0,水代数式3a(2a+1)-(2a+1)(2a-1)的值.
阅读理解:
学习了三角形全等的判定方法:“SAS”,“ASA”,“AAS”,“SSS”和直角三角形全等的判定方法“HL”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA”的情形进行研究.
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D.
初步探究:
如图1,已知AC="DF," ∠A=∠D,过C作CH⊥射线AM于点H,对△ABC 的CB边进行分类,可分为“CB<CH,CB=CH,CH<CB<CA,”三种情况进行探究.
深入探究:
第一种情况,当BC<CH时,不能构成△ABC和△DEF.
第二种情况,(1)如图2,当BC=CH时,在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D,根据,可以知道Rt△ABC≌Rt△DEF.
第三种情况,(2)当CH<BC<CA时,△ABC和△DEF不一定全等.请你用尺规在图1的两个图形中分别补全△ABC和△DEF,使△DEF和△ABC不全等(表明字母,不写作法,保留作图痕迹).
(3)从上述三种情况发现,只有当BC=CH时,才一定能使△ABC≌△DEF.除了上述三种情况外,BC边还可以满足什么条件,也一定能使△ABC≌△DEF?写出结论,并利用备用图证明.
在△ABC内侧作射线,自B,C分别向射线AP引垂线,垂足分别为D,E,M为BC边中点,连接MD,ME.
(1)依题意补全图1;
(2)求证:MD=ME;
(3)如图2,若射线AP平分∠BAC,且AC>AB,求证:MD=.
已知:抛物线y=x²+bx+c经过点(2,-3)和(4,5).
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线沿x轴翻折,得到图像G,求图像G的表达式;
(3)在(2)的条件下,当-2<x<2时,直线y=m与该图像有一个公共点,求m的值或取值范围.