定义:长宽比为:1(n为正基数)的矩形称为株为
矩形.下面,我们通过折叠的方式折出一个
矩形.如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF
则四边形BCEF为矩形
证明:设正方形ABCD的边长为1,则BD==
.
由折叠性质可知BG=BC=1,,则四边形BCEF为矩形
阅读以上内容,回答下列问题:
在图中,所有与CH相等的线段是 ,tan
的值是
已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图
。
求证:四边形BCMN是矩形
将图中的
矩形BCMN沿用(2)中的操作3次后,得到一个“
矩形”,则n的值是
有一河堤坝BCDF为梯形,斜坡BC坡度iBC = ,坝高为5 m,坝顶CD =" 6" m,现有一工程车需从距B点50 m的A处前方取土,然后经过B—C—D放土,为了安全起见,工程车轮只能停在离A、D处1 m的地方即M、N处工作,已知车轮半经为1 m,求车轮从取土处到放土处圆心从M到N所经过的路径长。(tan150=2-
)
|
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名,2名,3名,4名,5名,6名共六种情况,并制成如下两幅不完整的统计图。
全校留守儿童班级数扇形统计图全校留守儿童人数条形统计图
(1).求该校平均每班有多少留守儿童?并将条形补全。
(2).某爱心人士,决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名儿童来自同一班级的概率。
已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E。
求证:(1)△BFC≌△DFC;(2)AD=DE
阅读以下材料:
对于三个数,用
表示这三个数的平均数,用
表示这三个数中最小的数.例如:
;
;
解决下列问题:
(1)填空:;
(2)①如果,求
;
②根据①,你发现了结论:
“如果,那么(填
的大小关系)”.
③运用②的结论,填空:
若,则
.
(3)填空:的最大值为.
如图,二次函数的图像交
轴于
,交
轴于
,过
画直线。
(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形,若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在轴右侧的点
在二次函数图像上,以
为圆心的圆与直线
相切,切点为
。且△CHM∽△AOC(点
与点
对应),求点
的坐标。