如图.抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y="x+" m与对称轴交于点Q.
( 1 )这条抛物线的对称轴是 , 直线PQ与x軸所夹锐角的度数是 ,
(2)若两个三角形面积满足,求m的値:
(3)当点P在x軸下方的抛物线上时.过点C(2,2)的直线AC与直线PQ交于点D,求:
PD+DQ的最大值;②PDDQ的最大值.
如图,抛物线经过点A、B、C.
(1)求此抛物线的解析式;
(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.
如图,已知AB为⊙O的直径,CD是弦,且ABCD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD.
(2)若BE=3,CD=8,求⊙O的直径.
我区某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有小时;
(2)求k的值;
(3)当x=16时,大棚内的温度约为度.
如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得,在C点测得
,又测得
米,求小岛B到公路AD的距离.
已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.
(1)求证:△ABC∽△DAE;
(2)若AB=8,AD=6,AE=4,求BC的长.