(本小题12分)小明有5张写着不同数字的卡片,请按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?
答:我抽取的2张卡片是 、 ,乘积的最大值为 .
(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?
答:我抽取的2张卡片是 、 ,商的最小值为 .
(3)从中取出4张卡片,用学过的运算方法,使结果为24.如何抽取?写出运算式子.(写出一种即可)
答:我抽取的4张卡片是 、 、 、 ,
算24的式子为 .
(本小题8分)如图,⊙O的直径AB垂直于弦CD,垂足为点E,过点C作⊙O 的切线,交AB的延长线于点P,联结PD.
(1)判断直线PD与⊙O的位置关系,并加以证明;
(2)连接CO并延长交⊙O于点F,联结FP交CD于点G,如果CF=10,,求EG的长.
(本小题6分)如图,点C,D在线段BF上,,
,
.求证:
.
给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.
①求证:△BCE是等边三角形;
②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.
(1)请问甲、乙两工程队合作修建需几个月完成?共耗资多少万元?
(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算)
为了解某校七,八年级学生的睡眠情况,随机抽取了该校七,八年级部分学生进行调查,已知抽取七年级与八年级的学生人数相同,利用抽样所得的数据绘制如下统计图表.
睡眠情况分组表(单位:时)
组别 |
睡眠时间x |
A |
x≤7.5 |
B |
7.5≤x≤8.5 |
C |
8.5≤x≤9.5 |
D |
9.5≤x≤10.5 |
E |
x≥10.5 |
根据图表提供的信息,回答下列问题:
(1)求统计图中的a;
(2)抽取的样本中,八年级学生睡眠时间在C组的有多少人?
(3)已知该校七年级学生有755人,八年级学生有785人,如果睡眠时间x(时)满足:7.5≤x≤9.5,称睡眠时间合格,试估计该校七、八年级学生中睡眠时间合格的共有多少人?