(本小题满分12分)如图,有一块矩形空地ABCD,要在这块空地上开辟一个内接四边形EFGH为绿地,使其四个顶点分别落在矩形的四条边上.已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地EFGH面积为y.(1)写出y关于x的函数解析式,并求出它的定义域;(2)当AE为何值时,绿地面积y最大?并求出最大值。
设为等比数列,为其前项和,已知. (1)求的通项公式; (2)求数列的前项和.
求以椭圆的焦点为焦点,且过点的双曲线的标准方程.
已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程; (2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.
抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点. (1)若点为中点,求直线的方程; (2)设抛物线的焦点为,当时,求的面积.
已知四棱锥,面,∥,,,,,为上一点,是平面与的交点. (1)求证:∥; (2)求证:面; (3)求与面所成角的正弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号