已知椭圆的左焦点为圆的圆心,且椭圆上的点到点的距离的最小值为.(1)求椭圆的方程;(2)已知经过点的动直线与椭圆交于不同的两点,点,求的值.
求圆被直线(是参数)截得的弦长.
已知,若矩阵所对应的变换把直线:变换为自身,求.
设函数 (1)求的单调区间、最大值; (2)讨论关于的方程的根的个数.
若的定义域为 ,值域为,则称函数是上的“四维方军”函数. (1)设是上的“四维方军”函数,求常数的值; (2)问是否存在常数使函数是区间上的“四维方军”函数?若存在,求出的值,否则,请说明理由.
已知函数, (1)当时,求曲线在点处的切线方程; (2)求函数的极值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号