对于函数,若在定义域存在实数
,满足
,则称
为“局部奇函数”.
(1)已知二次函数,试判断
是否为“局部奇函数”?并说明理由;
(2)设是定义在
上的“局部奇函数”,求实数
的取值范围.
如图,设是一个高为
的四棱锥,底面
是边长为
的正方形,顶点
在底面上的射影是正方形
的中心.
是棱
的中点.试求直线
与平面
所成角的大小.
如图;已知椭圆C:的离心率为
,以椭圆的左顶点T为圆心作圆T:
设圆T与椭圆C交于点M、N.
(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点。求证:
为定值.
已知关于x的函数
(1)当时,求函数
的极值;
(2)若函数没有零点,求实数a取值范围.
已知数列{an},,
,记
,
,
,若对于任意
,A(n),B(n),C(n)成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和.