已知圆的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(I)将圆的参数方程化为普通方程,将圆
的极坐标方程化为直角坐标方程;
(II)圆、
是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
(本小题满分13分)
某公司有价值万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值
万元与技术改造投入
万元之间的关系满足:①
与
和
的乘积成正比;②
时,
;③
,其中
为常数,且
.
(Ⅰ)设,求
表达式,并求
的定义域;
(Ⅱ)求出附加值
的最大值,并求出此时的技术改造投入.
(本小题满分13分)
已知,在水平平面上有一长方体
绕
旋转
得到如图所示的几何体.
(Ⅰ)证明:平面平面
;
(Ⅱ)当时,直线
与平面
所成的角的正弦值为
,求
的长度;
(Ⅲ)在(Ⅱ)条件下,设旋转过程中,平面与平面
所成的角为
,
长方体
的最高点离平面
的距离为
,请直接写出
的一个表达式,并注明定义域.
(本小题满分13分)
椭圆:
与抛物线
:
的一个交点为M,抛物线
在点M处的切线过椭圆
的右焦点F.
(Ⅰ)若M,求
和
的标准方程;
(II)求椭圆离心率的取值范围.
(本小题满分13分)
随机变量X的分布列如下表如示,若数列是以
为首项,以
为公比的等比数列,则称随机变量X服从等比分布,记为Q(
,
).现随机变量X∽Q(
,2).
X |
1 |
2 |
… |
n |
![]() |
![]() |
![]() |
… |
![]() |
(Ⅰ)求n 的值并求随机变量X的数学期望EX;
(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.
(本小题满分10分)选修4-5《不等式选讲》.
已知a+b=1,对a,b∈(0,+∞),使
+
≥|2x-1|-|x+1|恒成立,求x的取值范围.